

LA-UR-21-21917

Approved for public release; distribution is unlimited.

Title: Materials and Interfaces for Electrocatalytic Hydrogen Production and

Utilization

Author(s): Gupta, Alexander Jiya

Intended for: PhD Proposal Defense

Issued: 2021-02-25

Materials and Interfaces for Electrocatalytic Hydrogen Production and Utilization

Alexander J. Gupta

Proposed Work Pertaining to Chemical Engineering Doctoral Program
University of Louisville

The Global Energy Outlook

Renewable Energy Sources

Vector needed to concentrate and store renewable energy for later use

Energy Vectors

Hydrogen

Fast Refueling Stable Storage

Batteries

Long Charging Time Self-Discharging

Water Electrolysis

Hydrogen Demand & Other Applications

IEA. (2019)

Hydrogen Production

Only ~2% of H₂ is produced via water electrolysis!

IEA. (2019)

Hydrogen Cost

Cheaper electrolysis is a pathway toward a green energy economy based on H₂

IEA. (2019)

Water Electrolysis Cost: Efficiency

Problem: Energy Input for Water Splitting = 2V

Goal: : Energy Input for Water Splitting = 1.4V

Water Electrolysis Cost: Materials

The Proton Exchange Membrane Fuel Cell

Limitations:

Slow ORR

Durability

Operability in Extreme Environments

Water Management

PEMFC Losses

Progress

H₂ Fueling Stations Across North America

Fuel Cell Cars are on the Road!

Toyota Mirai

Hyundai Nexo

Houga Clarity

Progress Cont'd

The Hydrogen Economy

Scope of Proposed Work

Aim 1: Rational Design, Testing, and Characterization of Non-Precious Electrocatalysts for Hydrogen Evolution

Aim 2: Design of Materials and Interfaces for Enhanced Water Transport in Fuel Cells at Subzero Temperature

Non-Precious Molybdenum Disulfide HER Catalyst

PEMFC Catalyst Layer

Non-Precious Catalysts for Hydrogen Evolution

Heteroatom-Doped Nanocarbons

Metal Sulfides/Selenides/Carbides/Nitrides/Phosphides

Molecular Catalysts

Issues

- Complicated/expensive processing
- Low efficiency

Molybdenum Disulfide (MoS₂)

- Promising non-precious hydrogen evolution catalyst
- Transition metal dichalcogenide (metal sulfide)
- Good activity & stability

MoS₂ via Intense Pulsed Light Treatment

 $Q = A \iint I_0(\lambda) e^{-\alpha y} d\lambda dy$

Decent Activity, Facile Synthesis, but not as Efficient as Pt!

The Hydrogenase Enzyme

Three Types of Hydrogenase Active Sites Found in Nature

Pros:

- ≥2x More Active than Pt
- Non-Precious Metal Center

Cons

- O₂-Sensitive
- Expensive to Produce

Biomimetic Hydrogenase-Inspired Catalysts

- Reversible HER/HOR
- Less Efficient than Pt
- Expensive Fabrication

Thiosemicarbazones

Gupta, A. J. et al. Inorg. Chem. 58, 12025-12039 (2019)

Improved Performance After Reductive Cycling

Thiosemicarbazones Cont'd

Stacking Interactions
Conceal Active Sites

Reductive Cycling Break-In Disrupts
Stacking Interactions

- Remaining Stacking Interactions
- Poor Electron Transfer

Gupta, A. J. et al. Inorg. Chem. 58, 12025-12039 (2019)

Improved TSCs for HER Part 1

Aim 1a: Facilitate Charge Transfer by Linking Molecule to Electrode Surface

- Monolayer with Each Metal Center Exposed to Reaction Medium
- Improved Charge Transfer
- Improved Film Stability

Improved TSCs for HER Part 1 Cont'd

Diazonium Coupling

$$H_{3}C \longrightarrow CH_{3}$$

$$N \longrightarrow N_{2}$$

$$H_{3}C \longrightarrow N_{2}$$

$$N_{2}$$

$$N_{2}$$

$$N_{2}$$

$$N_{2}$$

Pyrene π - π Anchoring

Improved TSCs for HER Part 2

Aim 1b: Incorporate High-Surface-Area Carbon Supports

Graphitic Carbon Nanofibers Prepared via Pyrolysis of Polymer Mixture

- Enhanced Percolation Volume
- Increased Specific Surface Area
- Higher Catalyst Concentration

Motivation

2b stack: Passive water management

Fuel Cells for Subzero Temperature Operation

Saturation Pressure too Low for Removal of Product Water via Gas Stream

Fuel Cells for Subzero Temperature Operation

Irreversible Damage:

- Ice Expansion at Interfaces
- Catalyst Pore or Diffusion Media Fiber Coarsening
- Cracking/Pinholes in Membrane

Understanding of Nafion

 λ^{B}

Liquid-phase

Vapor-phase

Free Water

Semi-free Water

0.8

Operating Mechanism at Subzero Temperature

$$\lambda_{\text{non-freezing}} = 4.8$$

Mitigating Strategies

Model for Cell Water/Ice Capacity

Interpolate diffusion media pore volume from data by Atkinson et al

Catalyst layer porosity & thickness:

$$\epsilon = -0.017 w_{Nafion} + 0.758 = \frac{t_{CL} - \left(\frac{l_C}{\rho_C} + \frac{l_{Pt}}{\rho_{Pt}} + \frac{l_{Nafion}}{\rho_{Nafion}}\right)}{t_{CL}}$$

PEMFC Cross Section

Mass of water in ionomer:

•
$$m_{H_2O} = (\lambda_{sat} - \lambda_i) \frac{M_{H_2O} m_{Nafion}}{EW}$$

Goal: Utilize as much Water Storage Capacity as Possible!

Approach

Tailor Materials and Interfaces for Enhanced Freeze Tolerance

Aim 2a: Dope Membrane with Hydrophilic Compounds to Increase Water Sorption and Confer Antifreeze Properties

Aim 2b: Passively Expel Supercooled Water from Active Sites
Using a Superhydrophobic Catalyst Layer

Aim 2c: Create an Additional Water Storage Reservoir by Impregnating Diffusion Media with Polyelectrolyte Channels

Aim 2a: Doped Membrane

"Keggin" Heteropoly acid Structure

Hypothesis:

- Mitigate ice crystal formation in membrane via internal antifreeze action
- 2. Increase driving force for water sequestration in membrane
- 3. Increase water absorbed by membrane before it accumulates elsewhere (λ_t)

Aim 2a: Preliminary Results

HPW Conc. (wt	%) λ _{sat} (H ₂ O/SO ₃ -) λ _r	non-freezing (H ₂ O/SO ₃ -)
0.0	20.8	5.1
0.5	16.5	9.7
1.0	16.4	8.9
1.5	14.6	9.3

50 %
Greater
Freeze
Tolerance

Future Work: Aim 2a

Investigate Origin of Improved Freeze Tolerance

Explore Catalyst Poisoning Effect over Temperature, Current, and Concentration

	HPW Concentration (wt%)				
Current Density (mA cm ⁻²)	0	0.5	1	1.5	
20	T = -10 °C				
1	OR				
0.05	T = -30 °C				

Aim 2b: Superhydrophobic Catalyst Layer

Goal: Clear Active Sites via Passive Expulsion of Water

- Superhydrophobic: $\theta > 150^{\circ}$
- Activation Energy for Wetting:

•
$$\Delta G_C = \frac{4\pi}{3} \left[\frac{2\sigma}{\rho_W R_W T ln\left(\frac{p}{p_{sl}}\right)} \right]^2 \sigma f(\theta)$$

• $f(\theta) = \frac{1}{4} (2 + \cos\theta) (1 - \cos\theta)^2$

- Time to Freeze 55x Longer on Superhydrophobic Surface
- Additives (PTFE, DSO, FEP, etc.)
 - Adversely Impact Efficiency & θ < 150 °

Aim 2b: Electrosprayed Catalyst Layers

Lotus Effect

- $\theta > 150^{\circ}$
- Reduced Pore Wetting

Aim 2c: Structured Amphiphilic Diffusion Media

Goal: Create Additional Water Sequestration Volume while Sacrificing Minimal Gas Diffusion Space

Aim 2c: Structured Amphiphilic Diffusion Media

Cross Section Top Down

Approach: Hot Press Nafion through a Template into Gas Diffusion Backing

Subzero Temperature Operating Mechanism

At Constant Current:

- R_p present initially
- R_d appears later

• Questions:

- Diffusion limitations or something else?
- Diffusion limitations at anode vs. cathode?
- Diffusion resistances dominate in catalyst layer or diffusion media?
- Knudsen diffusion resistance becomes significant with ice buildup?
- Oxygen diffusion resistance through ionomer behavior at low temperature?

Monitoring Water/Ice Distribution in-situ

Diffusion resistance from Fick's 1st law:

$$\bullet \ R_d = R_{DM} + R_{CL,gas} + R_{CL,ion}$$

•
$$R_d = R_{CL,gas} = R_{Knudsen} = \frac{h_{CL}}{D_{O_2}^{eff}}$$

•
$$D_{O_2}^{eff} = \frac{\varepsilon_0}{\tau} D_{O_2}$$

•
$$D_{O_2} = \left(\frac{1}{D_{Knudsen,O_2}} + \frac{1}{D_{O_2,mix}}\right)^{-1} \approx D_{Knudsen,O_2}$$

•
$$D_{Knudsen,O_2} = \frac{2r_{Knudsen}}{3} \sqrt{\frac{8RT}{\pi M_{O_2}}}$$

D_{Knudsen} ~ Catalyst Layer Ice Coverage

Mechanism via EIS

Impact of the Study

- Efficient Non-Precious HER Catalysts:
 - Translate Hydrogenase Activity to electrodes
- Fuel Cells for Subzero Temperature Operations:
 - Unlock New PEMFC Applications
 - Augment Transportation, Grid Storage, and Auxiliary power applications
 - Contribute to Fundamental Understanding of Temperature-Dependence in Energy Conversion Systems

Contribute to Adoption of Green H₂ Economy

Timelines

Efficient Non-Precious HER Catalysts

Fuel Cells for Subzero Temperature Operations

Acknowledgements

- Fellow Students & Postdocs of Gupta Research Group at U of L and of MPA-11 at LANL for the Camaraderie
- Drs. Komini-Babu, Spendelow, Borup, and Martinez for Guidance at LANL
- Dr. Gupta for Bringing me in to Academic Life
- Drs. Buchanan, Jaeger, and Willing for Serving on this Committee
- Funding Sources:
 - National Science Foundation (NSF)
 - Los Alamos National Laboratory Directed Research & Development (LDRD)
 - Department of Energy Office of Energy Efficiency & Renewable Energy (EERE)

Publications

- Gupta, A., et al. Heteropoly acids for prolonged proton exchange fuel cell operation at subzero temperature. In Preparation
- Gupta, A., et al. Challenges of water transport in proton exchange fuel cells at subzero temperatures. In Preparation
- Saraei, N., Gupta, A. J., Hietsoi, O., Frye, B. C., Hofsommer, D. T., Sumanasekera, G., Gupta, G., Mashuta, M. S., Buchanan, R. M., & Grapperhaus, C. A. (2021). Small molecule crystals with 1D water wires modulate electronic properties of surface water networks. *Applied Materials Today*, 22, 100895. https://doi.org/10.1016/j.apmt.2020.100895
- Ghahremani, A. H., Martin, B., **Gupta, A.**, Bahadur, J., Ankireddy, K., & Druffel, T. (2020). Rapid fabrication of perovskite solar cells through intense pulse light annealing of SnO2 and triple cation perovskite thin films. *Materials and Design*, 185. https://doi.org/10.1016/j.matdes.2019.108237
- **Gupta, A.** J., Vishnosky, N. S., Hietsoi, O., Losovyj, Y., Strain, J., Spurgeon, J., Mashuta, M. S., Jain, R., Buchanan, R. M., Gupta, G., & Grapperhaus, C. A. (2019). Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces. *Inorganic Chemistry*, *58*(18), 12025–12039. https://doi.org/10.1021/acs.inorgchem.9b01209
- Saraei, N., Hietsoi, O., Frye, B. C., Gupta, A. J., Mashuta, M. S., Gupta, G., Buchanan, R. M., & Grapperhaus, C. A. (2019). Water wire clusters in isostructural Cu(II) and Ni(II) complexes: Synthesis, characterization, and thermal analyses. *Inorganica Chimica Acta*, 492, 268–274. https://doi.org/10.1016/j.ica.2019.04.012
- **Gupta, A.**, Ankireddy, K., Kumar, B., Alruqi, A., Jasinski, J., Gupta, G., & Druffel, T. (2019). Intense pulsed light, a promising technique to develop molybdenum sulfide catalysts for hydrogen evolution. *Nanotechnology*, *30*(17). https://doi.org/10.1088/1361-6528/aaffac
- Saraei, N., Hietsoi, O., Mullins, C. S., Gupta, A. J., Frye, B. C., Mashuta, M. S., Buchanan, R. M., & Grapperhaus, C. A. (2018). Streams, cascades, and pools: various water cluster motifs in structurally similar Ni(ii) complexes. CrystEngComm, 20(44), 7071–7081. https://doi.org/10.1039/C8CE01153B
- Zhang, C., Bhoyate, S., Kahol, P. K., Siam, K., Poudel, T. P., Mishra, S. R., Perez, F., Gupta, A., Gupta, G., & Gupta, R. K. (2018). Highly Efficient and Durable Electrocatalyst Based on Nanowires of Cobalt Sulfide for Overall Water Splitting. ChemNanoMat, 4(12), 1240–1246. https://doi.org/10.1002/cnma.201800301

IPL-MoS₂ Structural/Chemical Validation

$$MoS_4^{2-} + 2NH_4^+ \xrightarrow{\Delta} MoS_2 + H_2S + S + 2NH_3.$$

IPL-MoS₂ Activity & Stability

MoS ₂ catalyst	Overpotential (mV) @ 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)
IPL-MoS ₂ (this study)	200	62.3
Core-shell MoO ₃ -MoS ₂ nanowires [34]	\sim 250	50-60
MoS ₂ NSs-550 [35]	$\sim \! 200$	68
Amorphous molybdenum sulfide [36]	200	60
1T-MoS ₂ [13]	187	43
Defect-rich MoS ₂ nanosheets [37]	\sim 150	50
MoS_2/RGO [38]	~150	41

TSC Charge Transfer & ECSA Evolution

TSC Retention of Chemical Identity

HPA-Doped Membrane Supplemental

Cell Ice Capacity (mg) by Component

	Component	Undoped	1.32 % HPW		
Theoretical Capacity	DM Pores	4	40.3		
	Membrane	7	24.3		
	CL Pores*	1.9	1.3		
	CL Ionomer*	0.3	0.2		
	Entire Cell	109.3	108		
Observed Ice Capacity		5.9	8.8		

Superhydrophobic Surface Supplemental

Contact Angle

Wenzel (Homogeneous) Wetting Cassie-Baxter (Heterogeneous) Wetting

Airbrushed

Electrosprayed

Increasing Roughness Amplifies Wetting Tendency of a Surface

